The Video Image AI Structured Analysis Platform is a comprehensive solution designed to analyze video files, images, and real-time camera streams using advanced computer vision and machine learning algorithms. The platform extracts structured data about detected objects (persons, vehicles, bikes, motorbikes) and provides powerful search capabilities through multiple interfaces.
Key Capabilities
Real-time video stream processing from multiple cameras
Batch video file and image analysis
Object detection and attribute extraction
Distributed storage with similarity search
Scalable microservice architecture
Interactive web-based management interface
Architecture Overview
graph TB
subgraph "Client Layer"
UI[Analysis Platform UI]
API[REST APIs]
end
subgraph "Application Services"
APS[Analysis Platform Service]
TMS[Task Manager Service]
SAS[Streaming Access Service]
SAPS[Structure App Service]
SSS[Storage And Search Service]
end
subgraph "Message Queue"
KAFKA[Kafka Cluster]
end
subgraph "Storage Layer"
REDIS[Redis Cache]
ES[ElasticSearch]
FASTDFS[FastDFS]
VECTOR[Vector Database]
ZK[Zookeeper]
end
subgraph "External"
CAMERAS[IP Cameras]
FILES[Video/Image Files]
end
UI --> APS
API --> APS
APS --> TMS
APS --> SSS
TMS --> ZK
SAS --> CAMERAS
SAS --> FILES
SAS --> SAPS
SAPS --> KAFKA
KAFKA --> SSS
SSS --> ES
SSS --> FASTDFS
SSS --> VECTOR
APS --> REDIS
Core Services Design
StreamingAccessService
The StreamingAccessService manages real-time video streams from distributed cameras and handles video file processing.
Key Features:
Multi-protocol camera support (RTSP, HTTP, WebRTC)
Interview Question: How would you handle camera connection failures and ensure high availability?
Answer: Implement circuit breaker patterns, retry mechanisms with exponential backoff, health check endpoints, and failover to backup cameras. Use connection pooling and maintain camera status in Redis for quick status checks.
StructureAppService
This service performs the core AI analysis using computer vision models deployed on GPU-enabled infrastructure.
Object Detection Pipeline:
flowchart LR
A[Input Frame] --> B[Preprocessing]
B --> C[Object Detection]
C --> D[Attribute Extraction]
D --> E[Structured Output]
E --> F[Kafka Publisher]
subgraph "AI Models"
G[YOLO V8 Detection]
H[Age/Gender Classification]
I[Vehicle Recognition]
J[Attribute Extraction]
end
C --> G
D --> H
D --> I
D --> J
Object Analysis Specifications:
Person Attributes:
Age estimation (age ranges: 0-12, 13-17, 18-30, 31-50, 51-70, 70+)
Gender classification (male, female, unknown)
Height estimation using reference objects
Clothing color detection (top, bottom)
Body size estimation (small, medium, large)
Pose estimation for activity recognition
Vehicle Attributes:
License plate recognition using OCR
Vehicle type classification (sedan, SUV, truck, bus)
Interview Question: How do you optimize GPU utilization for real-time video analysis?
Answer: Use batch processing to maximize GPU throughput, implement dynamic batching based on queue depth, utilize GPU memory pooling, and employ model quantization. Monitor GPU metrics and auto-scale workers based on load.
StorageAndSearchService
Manages distributed storage across ElasticSearch, FastDFS, and vector databases.
@Service publicclassStorageAndSearchService { @Autowired private ElasticsearchClient elasticsearchClient; @Autowired private FastDFSClient fastDFSClient; @Autowired private VectorDatabaseClient vectorClient; @KafkaListener(topics = "analysis-results") publicvoidprocessAnalysisResult(AnalysisResult result) { result.getObjects().forEach(this::storeObject); } privatevoidstoreObject(StructuredObject object) { try { // Store image in FastDFS StringimagePath= storeImage(object.getImage()); // Store vector representation StringvectorId= storeVector(object.getImageVector()); // Store structured data in ElasticSearch storeInElasticSearch(object, imagePath, vectorId); } catch (Exception e) { log.error("Failed to store object: {}", object.getId(), e); } } private String storeImage(BufferedImage image) { byte[] imageBytes = convertToBytes(image); return fastDFSClient.uploadFile(imageBytes, "jpg"); } private String storeVector(float[] vector) { return vectorClient.store(vector, Map.of( "timestamp", Instant.now().toString(), "type", "image_embedding" )); } public SearchResult<PersonObject> searchPersons(PersonSearchQuery query) { BoolQuery.BuilderboolQuery= QueryBuilders.bool(); if (query.getAge() != null) { boolQuery.must(QueryBuilders.range(r -> r .field("age") .gte(JsonData.of(query.getAge() - 5)) .lte(JsonData.of(query.getAge() + 5)))); } if (query.getGender() != null) { boolQuery.must(QueryBuilders.term(t -> t .field("gender") .value(query.getGender()))); } if (query.getLocation() != null) { boolQuery.must(QueryBuilders.geoDistance(g -> g .field("location") .location(l -> l.latlon(query.getLocation())) .distance(query.getRadius() + "km"))); } SearchRequestrequest= SearchRequest.of(s -> s .index("person_index") .query(boolQuery.build()._toQuery()) .size(query.getLimit()) .from(query.getOffset())); SearchResponse<PersonObject> response = elasticsearchClient.search(request, PersonObject.class); return convertToSearchResult(response); } public List<SimilarObject> findSimilarImages(BufferedImage queryImage, int limit) { float[] queryVector = imageEncoder.encode(queryImage); return vectorClient.similaritySearch(queryVector, limit) .stream() .map(this::enrichWithMetadata) .collect(Collectors.toList()); } }
Interview Question: How do you ensure data consistency across multiple storage systems?
Answer: Implement saga pattern for distributed transactions, use event sourcing with Kafka for eventual consistency, implement compensation actions for rollback scenarios, and maintain idempotency keys for retry safety.
TaskManagerService
Coordinates task execution across distributed nodes using Zookeeper for coordination.
Interview Question: How do you handle API rate limiting and prevent abuse?
Answer: Implement token bucket algorithm with Redis, use sliding window counters, apply different limits per user tier, implement circuit breakers for downstream services, and use API gateways for centralized rate limiting.
Microservice Architecture with Spring Cloud Alibaba
Service Discovery and Configuration:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# application.yml for each service spring: application: name:analysis-platform-service cloud: nacos: discovery: server-addr:${NACOS_SERVER:localhost:8848} namespace:${NACOS_NAMESPACE:dev} config: server-addr:${NACOS_SERVER:localhost:8848} namespace:${NACOS_NAMESPACE:dev} file-extension:yaml sentinel: transport: dashboard:${SENTINEL_DASHBOARD:localhost:8080} profiles: active:${SPRING_PROFILES_ACTIVE:dev}
@Service publicclassBehaviorAnalysisService { @Autowired private PersonTrackingService trackingService; publicvoidanalyzePersonBehavior(List<PersonObject> personHistory) { PersonTrajectorytrajectory= trackingService.buildTrajectory(personHistory); // Detect loitering behavior if (detectLoitering(trajectory)) { BehaviorAlertalert= BehaviorAlert.builder() .personId(trajectory.getPersonId()) .behaviorType(BehaviorType.LOITERING) .location(trajectory.getCurrentLocation()) .duration(trajectory.getDuration()) .confidence(0.85) .build(); alertService.publishBehaviorAlert(alert); } // Detect suspicious movement patterns if (detectSuspiciousMovement(trajectory)) { BehaviorAlertalert= BehaviorAlert.builder() .personId(trajectory.getPersonId()) .behaviorType(BehaviorType.SUSPICIOUS_MOVEMENT) .movementPattern(trajectory.getMovementPattern()) .confidence(calculateConfidence(trajectory)) .build(); alertService.publishBehaviorAlert(alert); } } privatebooleandetectLoitering(PersonTrajectory trajectory) { // Check if person stayed in same area for extended period DurationstationaryTime= trajectory.getStationaryTime(); doublemovementRadius= trajectory.getMovementRadius(); return stationaryTime.toMinutes() > 10 && movementRadius < 5.0; } privatebooleandetectSuspiciousMovement(PersonTrajectory trajectory) { // Analyze movement patterns for suspicious behavior MovementPatternpattern= trajectory.getMovementPattern(); return pattern.hasErraticMovement() || pattern.hasUnusualDirectionChanges() || pattern.isCounterFlow(); } }
Interview Questions and Insights
Technical Architecture Questions:
Q: How do you ensure data consistency when processing high-volume video streams?
A: Implement event sourcing with Kafka as the source of truth, use idempotent message processing with unique frame IDs, implement exactly-once semantics in Kafka consumers, and use distributed locking for critical sections. Apply the saga pattern for complex workflows and maintain event ordering through partitioning strategies.
Q: How would you optimize GPU utilization across multiple analysis nodes?
A: Implement dynamic batching to maximize GPU throughput, use GPU memory pooling to reduce allocation overhead, implement model quantization for faster inference, use multiple streams per GPU for concurrent processing, and implement intelligent load balancing based on GPU memory and compute utilization.
Q: How do you handle camera failures and ensure continuous monitoring?
A: Implement health checks with circuit breakers, maintain redundant camera coverage for critical areas, use automatic failover mechanisms, implement camera status monitoring with alerting, and maintain a hot standby system for critical infrastructure.
Scalability and Performance Questions:
Q: How would you scale this system to handle 10,000 concurrent camera streams?
A: Implement horizontal scaling with container orchestration (Kubernetes), use streaming data processing frameworks (Apache Flink/Storm), implement distributed caching strategies, use database sharding and read replicas, implement edge computing for preprocessing, and use CDN for static content delivery.
Q: How do you optimize search performance for billions of detection records?
A: Implement data partitioning by time and location, use Elasticsearch with proper index management, implement caching layers with Redis, use approximate algorithms for similarity search, implement data archiving strategies, and use search result pagination with cursor-based pagination.
Data Management Questions:
Q: How do you handle privacy and data retention in video analytics?
A: Implement data anonymization techniques, use automatic data expiration policies, implement role-based access controls, use encryption for data at rest and in transit, implement audit logging for data access, and ensure compliance with privacy regulations (GDPR, CCPA).
Q: How would you implement real-time similarity search for millions of face vectors?
A: Use approximate nearest neighbor algorithms (LSH, FAISS), implement hierarchical indexing, use vector quantization techniques, implement distributed vector databases (Milvus, Pinecone), use GPU acceleration for vector operations, and implement caching for frequently accessed vectors.
This comprehensive platform design provides a production-ready solution for video analytics with proper scalability, performance optimization, and maintainability considerations. The architecture supports both small-scale deployments and large-scale enterprise installations through its modular design and containerized deployment strategy.