The FinTech AI Workflow and Chat System represents a comprehensive lending platform that combines traditional workflow automation with artificial intelligence capabilities. This system streamlines the personal loan application process through intelligent automation while maintaining human oversight at critical decision points.
The architecture employs a microservices approach, integrating multiple AI technologies including Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), and intelligent agents to create a seamless lending experience. The system processes over 2000 concurrent conversations with an average response time of 30 seconds, demonstrating enterprise-grade performance.
Key Business Benefits:
Reduced Processing Time: From days to minutes for loan approvals
Improved Customer Experience: 24/7 availability with multi-modal interaction
Regulatory Compliance: Built-in compliance checks and audit trails
Cost Efficiency: Automated workflows reduce operational costs by 60%
Key Interview Question: “How would you design a scalable FinTech system that balances automation with regulatory compliance?”
Reference Answer: The system employs a layered architecture with clear separation of concerns. The workflow engine handles business logic while maintaining audit trails for regulatory compliance. AI components augment human decision-making rather than replacing it entirely, ensuring transparency and accountability. The microservices architecture allows for independent scaling of components based on demand.
Architecture Design
flowchart TB
subgraph "Frontend Layer"
A[ChatWebUI] --> B[React/Vue Components]
B --> C[Multi-Modal Input Handler]
end
subgraph "Gateway Layer"
D[Higress AI Gateway] --> E[Load Balancer]
E --> F[Multi-Model Provider]
F --> G[Context Memory - mem0]
end
subgraph "Service Layer"
H[ConversationService] --> I[AIWorkflowEngineService]
I --> J[WorkflowEngineService]
H --> K[KnowledgeBaseService]
end
subgraph "AI Layer"
L[LLM Providers] --> M[ReAct Pattern Engine]
M --> N[MCP Server Agents]
N --> O[RAG System]
end
subgraph "External Systems"
P[BankCreditSystem]
Q[TaxSystem]
R[SocialSecuritySystem]
S[Rule Engine]
end
subgraph "Configuration"
T[Nacos Config Center]
U[Prompt Templates]
end
A --> D
D --> H
H --> L
I --> P
I --> Q
I --> R
J --> S
K --> O
T --> U
U --> L
The architecture follows a distributed microservices pattern with clear separation between presentation, business logic, and data layers. The AI Gateway serves as the entry point for all AI-related operations, providing load balancing and context management across multiple LLM providers.
Core Components
WorkflowEngineService
The WorkflowEngineService serves as the backbone of the lending process, orchestrating the three-stage review workflow: Initial Review, Review, and Final Review.
Key Interview Question: “How do you handle transaction consistency across multiple external system calls in a workflow?”
Reference Answer: The system uses the Saga pattern for distributed transactions. Each step in the workflow is designed as a compensable transaction. If a step fails, the system executes compensation actions to maintain consistency. For example, if the final review fails after initial approvals, the system automatically triggers cleanup processes to revert any provisional approvals.
AIWorkflowEngineService
The AIWorkflowEngineService leverages Spring AI to provide intelligent automation of the lending process, reducing manual intervention while maintaining accuracy.
@Service @Sl4j publicclassAIWorkflowEngineService { @Autowired private ChatModel chatModel; @Autowired private PromptTemplateService promptTemplateService; @Autowired private WorkflowEngineService traditionalWorkflowService; public AIWorkflowResult processLoanApplicationWithAI(LoanApplication application) { // First, gather all relevant data ApplicationContextcontext= gatherApplicationContext(application); // Use AI to perform initial assessment AIAssessmentResultaiAssessment= performAIAssessment(context); // Decide whether to proceed with full automated flow or human review if (aiAssessment.getConfidenceScore() > 0.85) { return processAutomatedFlow(context, aiAssessment); } else { return processHybridFlow(context, aiAssessment); } } private AIAssessmentResult performAIAssessment(ApplicationContext context) { StringpromptTemplate= promptTemplateService.getTemplate("loan_assessment"); Map<String, Object> variables = Map.of( "applicantData", context.getApplicantData(), "creditHistory", context.getCreditHistory(), "financialData", context.getFinancialData() ); Promptprompt=newPromptTemplate(promptTemplate, variables).create(); ChatResponseresponse= chatModel.call(prompt); return parseAIResponse(response.getResult().getOutput().getContent()); } private AIAssessmentResult parseAIResponse(String aiResponse) { // Parse structured AI response ObjectMappermapper=newObjectMapper(); try { return mapper.readValue(aiResponse, AIAssessmentResult.class); } catch (JsonProcessingException e) { log.error("Failed to parse AI response", e); return AIAssessmentResult.lowConfidence(); } } }
Key Interview Question: “How do you ensure AI decisions are explainable and auditable in a regulated financial environment?”
Reference Answer: The system maintains detailed audit logs for every AI decision, including the input data, prompt templates used, model responses, and confidence scores. Each AI assessment includes reasoning chains that explain the decision logic. For regulatory compliance, the system can replay any decision by re-running the same prompt with the same input data, ensuring reproducibility and transparency.
ChatWebUI
The ChatWebUI serves as the primary interface for user interaction, supporting multi-modal communication including text, files, images, and audio.
Key Features:
Multi-Modal Input: Text, voice, image, and document upload
@Service @sl4j publicclassConversationService { @Autowired private KnowledgeBaseService knowledgeBaseService; @Autowired private AIWorkflowEngineService aiWorkflowService; @Autowired private ContextMemoryService contextMemoryService; public ConversationResponse processMessage(ConversationRequest request) { // Retrieve conversation context ConversationContextcontext= contextMemoryService.getContext( request.getSessionId()); // Process multi-modal input ProcessedInputprocessedInput= processMultiModalInput(request); // Classify intent using ReAct pattern IntentClassificationintent= classifyIntent(processedInput, context); switch (intent.getType()) { case LOAN_APPLICATION: return handleLoanApplication(processedInput, context); case KNOWLEDGE_QUERY: return handleKnowledgeQuery(processedInput, context); case DOCUMENT_UPLOAD: return handleDocumentUpload(processedInput, context); default: return handleGeneralChat(processedInput, context); } } private ProcessedInput processMultiModalInput(ConversationRequest request) { ProcessedInput.Builderbuilder= ProcessedInput.builder() .sessionId(request.getSessionId()) .timestamp(Instant.now()); // Process text if (request.getText() != null) { builder.text(request.getText()); } // Process files if (request.getFiles() != null) { List<ProcessedFile> processedFiles = request.getFiles().stream() .map(this::processFile) .collect(Collectors.toList()); builder.files(processedFiles); } // Process images if (request.getImages() != null) { List<ProcessedImage> processedImages = request.getImages().stream() .map(this::processImage) .collect(Collectors.toList()); builder.images(processedImages); } return builder.build(); } }
KnowledgeBaseService
The KnowledgeBaseService implements a comprehensive RAG system for financial domain knowledge, supporting various document formats and providing contextually relevant responses.
@Service @sl4j publicclassKnowledgeBaseService { @Autowired private VectorStoreService vectorStoreService; @Autowired private DocumentParsingService documentParsingService; @Autowired private EmbeddingModel embeddingModel; @Autowired private ChatModel chatModel; public KnowledgeResponse queryKnowledge(String query, ConversationContext context) { // Generate embedding for the query EmbeddingRequestembeddingRequest=newEmbeddingRequest( List.of(query), EmbeddingOptions.EMPTY); EmbeddingResponseembeddingResponse= embeddingModel.call(embeddingRequest); // Retrieve relevant documents List<Document> relevantDocs = vectorStoreService.similaritySearch( SearchRequest.query(query) .withTopK(5) .withSimilarityThreshold(0.7)); // Generate contextual response return generateContextualResponse(query, relevantDocs, context); } publicvoidindexDocument(MultipartFile file) { try { // Parse document based on format ParsedDocumentparsedDoc= documentParsingService.parse(file); // Split into chunks List<DocumentChunk> chunks = splitDocument(parsedDoc); // Generate embeddings and store for (DocumentChunk chunk : chunks) { EmbeddingRequestembeddingRequest=newEmbeddingRequest( List.of(chunk.getContent()), EmbeddingOptions.EMPTY); EmbeddingResponseembeddingResponse= embeddingModel.call(embeddingRequest); Documentdocument=newDocument(chunk.getContent(), Map.of("source", file.getOriginalFilename(), "chunk_id", chunk.getId())); document.setEmbedding(embeddingResponse.getResults().get(0).getOutput()); vectorStoreService.add(List.of(document)); } } catch (Exception e) { log.error("Failed to index document: {}", file.getOriginalFilename(), e); thrownewDocumentIndexingException("Failed to index document", e); } } private List<DocumentChunk> splitDocument(ParsedDocument parsedDoc) { // Implement intelligent chunking based on document structure return DocumentChunker.builder() .chunkSize(1000) .chunkOverlap(200) .respectSentenceBoundaries(true) .respectParagraphBoundaries(true) .build() .split(parsedDoc); } }
Key Technologies
LLM fine-tuning with Financial data
Fine-tuning Large Language Models with domain-specific financial data enhances their understanding of financial concepts, regulations, and terminology.
Fine-tuning Strategy:
Base Model Selection: Choose appropriate foundation models (GPT-4, Claude, or Llama)
The system processes diverse input types, including text, images, audio, and documents. Each modality is handled by specialized processors that extract relevant information and convert it into a unified format.
Key Interview Question: “How do you handle different file formats and ensure consistent processing across modalities?”
Reference Answer: The system uses a plugin-based architecture where each file type has a dedicated processor. Common formats like PDF, DOCX, and images are handled by specialized libraries (Apache PDFBox, Apache POI, etc.). For audio, we use speech-to-text services. All processors output to a common ProcessedInput format, ensuring consistency downstream. The system is extensible - new processors can be added without modifying core logic.
RAG Implementation for Knowledge Base
The RAG system combines vector search with contextual generation to provide accurate, relevant responses about financial topics.
@Service publicclassContextMemoryService { @Autowired private Mem0Client mem0Client; @Autowired private RedisTemplate<String, Object> redisTemplate; public ConversationContext getContext(String sessionId) { // Try L1 cache first (Redis) ConversationContextcontext= (ConversationContext) redisTemplate.opsForValue().get("context:" + sessionId); if (context == null) { // Fall back to mem0 for persistent context context = mem0Client.getContext(sessionId); if (context != null) { // Cache in Redis for quick access redisTemplate.opsForValue().set("context:" + sessionId, context, Duration.ofMinutes(30)); } } return context != null ? context : newConversationContext(sessionId); } publicvoidupdateContext(String sessionId, ConversationContext context) { // Update both caches redisTemplate.opsForValue().set("context:" + sessionId, context, Duration.ofMinutes(30)); mem0Client.updateContext(sessionId, context); } publicvoidaddMemory(String sessionId, Memory memory) { mem0Client.addMemory(sessionId, memory); // Invalidate cache to force refresh redisTemplate.delete("context:" + sessionId); } }
Key Interview Question: “How do you handle context windows and memory management in long conversations?”
Reference Answer: The system uses a hierarchical memory approach. Short-term context is kept in Redis for quick access, while long-term memories are stored in mem0. We implement context window management by summarizing older parts of conversations and keeping only the most relevant recent exchanges. The system also uses semantic clustering to group related memories and retrieves them based on relevance to the current conversation.
LLM ReAct Pattern Implementation
The ReAct (Reasoning + Acting) pattern enables the system to break down complex queries into reasoning steps and actions.
flowchart LR
A[Load Balancer] --> B[Service Instance 1]
A --> C[Service Instance 2]
A --> D[Service Instance 3]
B --> E[LLM Provider 1]
B --> F[LLM Provider 2]
C --> E
C --> F
D --> E
D --> F
E --> G[Redis Cache]
F --> G
B --> H[Vector DB]
C --> H
D --> H
Key Interview Question: “How do you ensure the system can handle 2000+ concurrent users while maintaining response times?”
Reference Answer: The system uses several optimization techniques: 1) Multi-level caching with Redis for frequently accessed data, 2) Connection pooling for database and external service calls, 3) Asynchronous processing for non-critical operations, 4) Load balancing across multiple LLM providers, 5) Database query optimization with proper indexing, 6) Context caching to avoid repeated LLM calls for similar queries, and 7) Horizontal scaling of microservices based on demand.
Conclusion
The FinTech AI Workflow and Chat System represents a sophisticated integration of traditional financial workflows with cutting-edge AI technologies. By combining the reliability of established banking processes with the intelligence of modern AI systems, the platform delivers a superior user experience while maintaining the security and compliance requirements essential in financial services.
The architecture’s microservices design ensures scalability and maintainability, while the AI components provide intelligent automation that reduces processing time and improves accuracy. The system’s ability to handle over 2000 concurrent conversations with rapid response times demonstrates its enterprise readiness.
Key success factors include:
Seamless integration between traditional and AI-powered workflows
Robust multi-modal processing capabilities
Intelligent context management and memory systems
Flexible prompt template management for rapid iteration
Comprehensive performance optimization strategies
The system sets a new standard for AI-powered financial services, combining the best of human expertise with artificial intelligence to create a truly intelligent lending platform.