Design FinTech AI Workflow and Chat System

Overview

Introduction

The FinTech AI Workflow and Chat System represents a comprehensive lending platform that combines traditional workflow automation with artificial intelligence capabilities. This system streamlines the personal loan application process through intelligent automation while maintaining human oversight at critical decision points.

The architecture employs a microservices approach, integrating multiple AI technologies including Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), and intelligent agents to create a seamless lending experience. The system processes over 2000 concurrent conversations with an average response time of 30 seconds, demonstrating enterprise-grade performance.

Key Business Benefits:

  • Reduced Processing Time: From days to minutes for loan approvals
  • Enhanced Accuracy: AI-powered risk assessment reduces default rates
  • Improved Customer Experience: 24/7 availability with multi-modal interaction
  • Regulatory Compliance: Built-in compliance checks and audit trails
  • Cost Efficiency: Automated workflows reduce operational costs by 60%

Key Interview Question: “How would you design a scalable FinTech system that balances automation with regulatory compliance?”

Reference Answer: The system employs a layered architecture with clear separation of concerns. The workflow engine handles business logic while maintaining audit trails for regulatory compliance. AI components augment human decision-making rather than replacing it entirely, ensuring transparency and accountability. The microservices architecture allows for independent scaling of components based on demand.

Architecture Design


flowchart TB
subgraph "Frontend Layer"
    A[ChatWebUI] --> B[React/Vue Components]
    B --> C[Multi-Modal Input Handler]
end

subgraph "Gateway Layer"
    D[Higress AI Gateway] --> E[Load Balancer]
    E --> F[Multi-Model Provider]
    F --> G[Context Memory - mem0]
end

subgraph "Service Layer"
    H[ConversationService] --> I[AIWorkflowEngineService]
    I --> J[WorkflowEngineService]
    H --> K[KnowledgeBaseService]
end

subgraph "AI Layer"
    L[LLM Providers] --> M[ReAct Pattern Engine]
    M --> N[MCP Server Agents]
    N --> O[RAG System]
end

subgraph "External Systems"
    P[BankCreditSystem]
    Q[TaxSystem]
    R[SocialSecuritySystem]
    S[Rule Engine]
end

subgraph "Configuration"
    T[Nacos Config Center]
    U[Prompt Templates]
end

A --> D
D --> H
H --> L
I --> P
I --> Q
I --> R
J --> S
K --> O
T --> U
U --> L

The architecture follows a distributed microservices pattern with clear separation between presentation, business logic, and data layers. The AI Gateway serves as the entry point for all AI-related operations, providing load balancing and context management across multiple LLM providers.

Core Components

WorkflowEngineService

The WorkflowEngineService serves as the backbone of the lending process, orchestrating the three-stage review workflow: Initial Review, Review, and Final Review.

Core Responsibilities:

  • Workflow orchestration and state management
  • External system integration
  • Business rule execution
  • Audit trail maintenance
  • SLA monitoring and enforcement

Implementation Architecture:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@Service
@Transactional
public class WorkflowEngineService {

@Autowired
private LoanApplicationRepository loanRepo;

@Autowired
private ExternalIntegrationService integrationService;

@Autowired
private RuleEngineService ruleEngine;

@Autowired
private NotificationService notificationService;

public WorkflowResult processLoanApplication(LoanApplication application) {
try {
// Initialize workflow
WorkflowInstance workflow = initializeWorkflow(application);

// Execute initial review
InitialReviewResult initialResult = executeInitialReview(application);
workflow.updateStage(WorkflowStage.INITIAL_REVIEW, initialResult);

if (initialResult.isApproved()) {
// Proceed to detailed review
DetailedReviewResult detailedResult = executeDetailedReview(application);
workflow.updateStage(WorkflowStage.DETAILED_REVIEW, detailedResult);

if (detailedResult.isApproved()) {
// Final review
FinalReviewResult finalResult = executeFinalReview(application);
workflow.updateStage(WorkflowStage.FINAL_REVIEW, finalResult);

return WorkflowResult.builder()
.status(finalResult.isApproved() ?
WorkflowStatus.APPROVED : WorkflowStatus.REJECTED)
.workflowId(workflow.getId())
.build();
}
}

return WorkflowResult.builder()
.status(WorkflowStatus.REJECTED)
.workflowId(workflow.getId())
.build();

} catch (Exception e) {
log.error("Workflow processing failed", e);
return handleWorkflowError(application, e);
}
}

private InitialReviewResult executeInitialReview(LoanApplication application) {
// Validate basic information
ValidationResult validation = validateBasicInfo(application);
if (!validation.isValid()) {
return InitialReviewResult.rejected(validation.getErrors());
}

// Check credit score
CreditScoreResult creditScore = integrationService.getCreditScore(
application.getApplicantId());

// Apply initial screening rules
RuleResult ruleResult = ruleEngine.evaluateInitialRules(
application, creditScore);

return InitialReviewResult.builder()
.approved(ruleResult.isApproved())
.creditScore(creditScore.getScore())
.reasons(ruleResult.getReasons())
.build();
}
}

Three-Stage Review Process:

  1. Initial Review: Automated screening based on basic criteria

    • Identity verification
    • Credit score check
    • Basic eligibility validation
    • Fraud detection algorithms
  2. Detailed Review: Comprehensive analysis of financial capacity

    • Income verification through tax systems
    • Employment history validation
    • Debt-to-income ratio calculation
    • Collateral assessment (if applicable)
  3. Final Review: Human oversight and final approval

    • Risk assessment confirmation
    • Regulatory compliance check
    • Manual review of edge cases
    • Final approval or rejection

External System Integration:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
@Component
public class ExternalIntegrationService {

@Autowired
private BankCreditSystemClient bankCreditClient;

@Autowired
private TaxSystemClient taxClient;

@Autowired
private SocialSecuritySystemClient socialSecurityClient;

@Retryable(value = {Exception.class}, maxAttempts = 3)
public CreditScoreResult getCreditScore(String applicantId) {
return bankCreditClient.getCreditScore(applicantId);
}

@Retryable(value = {Exception.class}, maxAttempts = 3)
public TaxInformationResult getTaxInformation(String applicantId, int years) {
return taxClient.getTaxInformation(applicantId, years);
}

@Retryable(value = {Exception.class}, maxAttempts = 3)
public SocialSecurityResult getSocialSecurityInfo(String applicantId) {
return socialSecurityClient.getSocialSecurityInfo(applicantId);
}
}

Key Interview Question: “How do you handle transaction consistency across multiple external system calls in a workflow?”

Reference Answer: The system uses the Saga pattern for distributed transactions. Each step in the workflow is designed as a compensable transaction. If a step fails, the system executes compensation actions to maintain consistency. For example, if the final review fails after initial approvals, the system automatically triggers cleanup processes to revert any provisional approvals.

AIWorkflowEngineService

The AIWorkflowEngineService leverages Spring AI to provide intelligent automation of the lending process, reducing manual intervention while maintaining accuracy.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
@Service
@Sl4j
public class AIWorkflowEngineService {

@Autowired
private ChatModel chatModel;

@Autowired
private PromptTemplateService promptTemplateService;

@Autowired
private WorkflowEngineService traditionalWorkflowService;

public AIWorkflowResult processLoanApplicationWithAI(LoanApplication application) {
// First, gather all relevant data
ApplicationContext context = gatherApplicationContext(application);

// Use AI to perform initial assessment
AIAssessmentResult aiAssessment = performAIAssessment(context);

// Decide whether to proceed with full automated flow or human review
if (aiAssessment.getConfidenceScore() > 0.85) {
return processAutomatedFlow(context, aiAssessment);
} else {
return processHybridFlow(context, aiAssessment);
}
}

private AIAssessmentResult performAIAssessment(ApplicationContext context) {
String promptTemplate = promptTemplateService.getTemplate("loan_assessment");

Map<String, Object> variables = Map.of(
"applicantData", context.getApplicantData(),
"creditHistory", context.getCreditHistory(),
"financialData", context.getFinancialData()
);

Prompt prompt = new PromptTemplate(promptTemplate, variables).create();
ChatResponse response = chatModel.call(prompt);

return parseAIResponse(response.getResult().getOutput().getContent());
}

private AIAssessmentResult parseAIResponse(String aiResponse) {
// Parse structured AI response
ObjectMapper mapper = new ObjectMapper();
try {
return mapper.readValue(aiResponse, AIAssessmentResult.class);
} catch (JsonProcessingException e) {
log.error("Failed to parse AI response", e);
return AIAssessmentResult.lowConfidence();
}
}
}

Key Interview Question: “How do you ensure AI decisions are explainable and auditable in a regulated financial environment?”

Reference Answer: The system maintains detailed audit logs for every AI decision, including the input data, prompt templates used, model responses, and confidence scores. Each AI assessment includes reasoning chains that explain the decision logic. For regulatory compliance, the system can replay any decision by re-running the same prompt with the same input data, ensuring reproducibility and transparency.

ChatWebUI

The ChatWebUI serves as the primary interface for user interaction, supporting multi-modal communication including text, files, images, and audio.

Key Features:

  • Multi-Modal Input: Text, voice, image, and document upload
  • Real-Time Chat: WebSocket-based instant messaging
  • Progressive Web App: Mobile-responsive design
  • Accessibility: WCAG 2.1 compliant interface
  • Internationalization: Multi-language support

React-based Implementation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
@RestController
@RequestMapping("/api/chat")
public class ChatController {

@Autowired
private ConversationService conversationService;

@Autowired
private FileProcessingService fileProcessingService;

@PostMapping("/message")
public ResponseEntity<ChatResponse> sendMessage(@RequestBody ChatRequest request) {
try {
ChatResponse response = conversationService.processMessage(request);
return ResponseEntity.ok(response);
} catch (Exception e) {
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(ChatResponse.error("Failed to process message"));
}
}

@PostMapping("/upload")
public ResponseEntity<FileUploadResponse> uploadFile(
@RequestParam("file") MultipartFile file,
@RequestParam("conversationId") String conversationId) {

try {
FileProcessingResult result = fileProcessingService.processFile(
file, conversationId);

return ResponseEntity.ok(FileUploadResponse.builder()
.fileId(result.getFileId())
.extractedText(result.getExtractedText())
.processingStatus(result.getStatus())
.build());

} catch (Exception e) {
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(FileUploadResponse.error("File processing failed"));
}
}

@GetMapping("/conversation/{id}")
public ResponseEntity<ConversationHistory> getConversationHistory(
@PathVariable String id) {

ConversationHistory history = conversationService.getConversationHistory(id);
return ResponseEntity.ok(history);
}
}

ConversationService

The ConversationService handles multi-modal customer interactions, supporting text, file uploads, images, and audio processing.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
@Service
@sl4j
public class ConversationService {

@Autowired
private KnowledgeBaseService knowledgeBaseService;

@Autowired
private AIWorkflowEngineService aiWorkflowService;

@Autowired
private ContextMemoryService contextMemoryService;

public ConversationResponse processMessage(ConversationRequest request) {
// Retrieve conversation context
ConversationContext context = contextMemoryService.getContext(
request.getSessionId());

// Process multi-modal input
ProcessedInput processedInput = processMultiModalInput(request);

// Classify intent using ReAct pattern
IntentClassification intent = classifyIntent(processedInput, context);

switch (intent.getType()) {
case LOAN_APPLICATION:
return handleLoanApplication(processedInput, context);
case KNOWLEDGE_QUERY:
return handleKnowledgeQuery(processedInput, context);
case DOCUMENT_UPLOAD:
return handleDocumentUpload(processedInput, context);
default:
return handleGeneralChat(processedInput, context);
}
}

private ProcessedInput processMultiModalInput(ConversationRequest request) {
ProcessedInput.Builder builder = ProcessedInput.builder()
.sessionId(request.getSessionId())
.timestamp(Instant.now());

// Process text
if (request.getText() != null) {
builder.text(request.getText());
}

// Process files
if (request.getFiles() != null) {
List<ProcessedFile> processedFiles = request.getFiles().stream()
.map(this::processFile)
.collect(Collectors.toList());
builder.files(processedFiles);
}

// Process images
if (request.getImages() != null) {
List<ProcessedImage> processedImages = request.getImages().stream()
.map(this::processImage)
.collect(Collectors.toList());
builder.images(processedImages);
}

return builder.build();
}
}

KnowledgeBaseService

The KnowledgeBaseService implements a comprehensive RAG system for financial domain knowledge, supporting various document formats and providing contextually relevant responses.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
@Service
@sl4j
public class KnowledgeBaseService {

@Autowired
private VectorStoreService vectorStoreService;

@Autowired
private DocumentParsingService documentParsingService;

@Autowired
private EmbeddingModel embeddingModel;

@Autowired
private ChatModel chatModel;

public KnowledgeResponse queryKnowledge(String query, ConversationContext context) {
// Generate embedding for the query
EmbeddingRequest embeddingRequest = new EmbeddingRequest(
List.of(query), EmbeddingOptions.EMPTY);
EmbeddingResponse embeddingResponse = embeddingModel.call(embeddingRequest);

// Retrieve relevant documents
List<Document> relevantDocs = vectorStoreService.similaritySearch(
SearchRequest.query(query)
.withTopK(5)
.withSimilarityThreshold(0.7));

// Generate contextual response
return generateContextualResponse(query, relevantDocs, context);
}

public void indexDocument(MultipartFile file) {
try {
// Parse document based on format
ParsedDocument parsedDoc = documentParsingService.parse(file);

// Split into chunks
List<DocumentChunk> chunks = splitDocument(parsedDoc);

// Generate embeddings and store
for (DocumentChunk chunk : chunks) {
EmbeddingRequest embeddingRequest = new EmbeddingRequest(
List.of(chunk.getContent()), EmbeddingOptions.EMPTY);
EmbeddingResponse embeddingResponse = embeddingModel.call(embeddingRequest);

Document document = new Document(chunk.getContent(),
Map.of("source", file.getOriginalFilename(),
"chunk_id", chunk.getId()));
document.setEmbedding(embeddingResponse.getResults().get(0).getOutput());

vectorStoreService.add(List.of(document));
}
} catch (Exception e) {
log.error("Failed to index document: {}", file.getOriginalFilename(), e);
throw new DocumentIndexingException("Failed to index document", e);
}
}

private List<DocumentChunk> splitDocument(ParsedDocument parsedDoc) {
// Implement intelligent chunking based on document structure
return DocumentChunker.builder()
.chunkSize(1000)
.chunkOverlap(200)
.respectSentenceBoundaries(true)
.respectParagraphBoundaries(true)
.build()
.split(parsedDoc);
}
}

Key Technologies

LLM fine-tuning with Financial data

Fine-tuning Large Language Models with domain-specific financial data enhances their understanding of financial concepts, regulations, and terminology.

Fine-tuning Strategy:

  • Base Model Selection: Choose appropriate foundation models (GPT-4, Claude, or Llama)
  • Dataset Preparation: Curate high-quality financial datasets
  • Training Pipeline: Implement efficient fine-tuning workflows
  • Evaluation Metrics: Define domain-specific evaluation criteria
  • Continuous Learning: Update models with new financial data

Implementation Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
@Component
public class FinancialLLMFineTuner {

@Autowired
private ModelTrainingService trainingService;

@Autowired
private DatasetManager datasetManager;

@Autowired
private ModelEvaluationService evaluationService;

@Scheduled(cron = "0 0 2 * * SUN") // Weekly training
public void scheduledFineTuning() {
try {
// Prepare training dataset
FinancialDataset dataset = datasetManager.prepareFinancialDataset();

// Configure training parameters
TrainingConfig config = TrainingConfig.builder()
.baseModel("gpt-4")
.learningRate(0.0001)
.batchSize(16)
.epochs(3)
.warmupSteps(100)
.evaluationStrategy(EvaluationStrategy.STEPS)
.evaluationSteps(500)
.build();

// Start fine-tuning
TrainingResult result = trainingService.fineTuneModel(config, dataset);

// Evaluate model performance
EvaluationResult evaluation = evaluationService.evaluate(
result.getModelId(), dataset.getTestSet());

// Deploy if performance meets criteria
if (evaluation.getFinancialAccuracy() > 0.95) {
deployModel(result.getModelId());
}

} catch (Exception e) {
log.error("Fine-tuning failed", e);
}
}

private void deployModel(String modelId) {
// Implement model deployment logic
// Include A/B testing for gradual rollout
}
}

Multi-Modal Message Processing

The system processes diverse input types, including text, images, audio, and documents. Each modality is handled by specialized processors that extract relevant information and convert it into a unified format.

MultiModalProcessor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
@Component
public class MultiModalProcessor {

@Autowired
private AudioTranscriptionService audioTranscriptionService;

@Autowired
private ImageAnalysisService imageAnalysisService;

@Autowired
private DocumentExtractionService documentExtractionService;

public ProcessedInput processInput(MultiModalInput input) {
ProcessedInput.Builder builder = ProcessedInput.builder();

// Process audio to text
if (input.hasAudio()) {
String transcription = audioTranscriptionService.transcribe(input.getAudio());
builder.transcription(transcription);
}

// Process images
if (input.hasImages()) {
List<ImageAnalysisResult> imageResults = input.getImages().stream()
.map(imageAnalysisService::analyzeImage)
.collect(Collectors.toList());
builder.imageAnalysis(imageResults);
}

// Process documents
if (input.hasDocuments()) {
List<ExtractedContent> documentContents = input.getDocuments().stream()
.map(documentExtractionService::extractContent)
.collect(Collectors.toList());
builder.documentContents(documentContents);
}

return builder.build();
}
}

Multi-Format Document Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
@Component
public class DocumentProcessor {

@Autowired
private PdfProcessor pdfProcessor;

@Autowired
private ExcelProcessor excelProcessor;

@Autowired
private WordProcessor wordProcessor;

@Autowired
private TextSplitter textSplitter;

public List<Document> processDocument(MultipartFile file) throws IOException {
String filename = file.getOriginalFilename();
String contentType = file.getContentType();

String content = switch (contentType) {
case "application/pdf" -> pdfProcessor.extractText(file);
case "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" ->
excelProcessor.extractText(file);
case "application/vnd.openxmlformats-officedocument.wordprocessingml.document" ->
wordProcessor.extractText(file);
case "text/plain" -> new String(file.getBytes(), StandardCharsets.UTF_8);
default -> throw new UnsupportedFileTypeException("Unsupported file type: " + contentType);
};

// Split content into chunks
List<String> chunks = textSplitter.splitText(content);

// Create documents
return chunks.stream()
.map(chunk -> Document.builder()
.content(chunk)
.metadata(Map.of(
"filename", filename,
"content_type", contentType,
"chunk_size", String.valueOf(chunk.length())
))
.build())
.collect(Collectors.toList());
}
}

Key Interview Question: “How do you handle different file formats and ensure consistent processing across modalities?”

Reference Answer: The system uses a plugin-based architecture where each file type has a dedicated processor. Common formats like PDF, DOCX, and images are handled by specialized libraries (Apache PDFBox, Apache POI, etc.). For audio, we use speech-to-text services. All processors output to a common ProcessedInput format, ensuring consistency downstream. The system is extensible - new processors can be added without modifying core logic.

RAG Implementation for Knowledge Base

The RAG system combines vector search with contextual generation to provide accurate, relevant responses about financial topics.

RAGService

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
@Service
public class RAGService {

@Autowired
private VectorStoreService vectorStore;

@Autowired
private ChatModel chatModel;

@Autowired
private PromptTemplateService promptTemplateService;

public RAGResponse generateResponse(String query, ConversationContext context) {
// Step 1: Retrieve relevant documents
List<Document> relevantDocs = retrieveRelevantDocuments(query);

// Step 2: Rank and filter documents
List<Document> rankedDocs = rankDocuments(relevantDocs, query, context);

// Step 3: Generate response with context
return generateWithContext(query, rankedDocs, context);
}

private List<Document> rankDocuments(List<Document> documents,
String query,
ConversationContext context) {
// Implement re-ranking based on:
// - Semantic similarity
// - Recency of information
// - User's conversation history
// - Domain-specific relevance

return documents.stream()
.sorted((doc1, doc2) -> {
double score1 = calculateRelevanceScore(doc1, query, context);
double score2 = calculateRelevanceScore(doc2, query, context);
return Double.compare(score2, score1);
})
.limit(3)
.collect(Collectors.toList());
}

private double calculateRelevanceScore(Document doc, String query, ConversationContext context) {
double semanticScore = calculateSemanticSimilarity(doc, query);
double contextScore = calculateContextualRelevance(doc, context);
double freshnessScore = calculateFreshnessScore(doc);

return 0.5 * semanticScore + 0.3 * contextScore + 0.2 * freshnessScore;
}
}

Multi-Vector RAG for Financial Documents

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@Service
public class AdvancedRAGService {

@Autowired
private VectorStore semanticVectorStore;

@Autowired
private VectorStore keywordVectorStore;

@Autowired
private GraphRAGService graphRAGService;

public RAGResponse queryWithMultiVectorRAG(String query, ConversationContext context) {
// Semantic search
List<Document> semanticResults = semanticVectorStore.similaritySearch(
SearchRequest.query(query).withTopK(5)
);

// Keyword search
List<Document> keywordResults = keywordVectorStore.similaritySearch(
SearchRequest.query(extractKeywords(query)).withTopK(5)
);

// Graph-based retrieval for relationship context
List<Document> graphResults = graphRAGService.retrieveRelatedDocuments(query);

// Combine and re-rank results
List<Document> combinedResults = reRankDocuments(
Arrays.asList(semanticResults, keywordResults, graphResults),
query
);

// Generate response with multi-vector context
return generateEnhancedResponse(query, combinedResults, context);
}

private List<Document> reRankDocuments(List<List<Document>> documentLists, String query) {
// Implement reciprocal rank fusion (RRF)
Map<String, Double> documentScores = new HashMap<>();

for (List<Document> documents : documentLists) {
for (int i = 0; i < documents.size(); i++) {
Document doc = documents.get(i);
String docId = doc.getId();
double score = 1.0 / (i + 1); // Reciprocal rank
documentScores.merge(docId, score, Double::sum);
}
}

// Sort by combined score and return top results
return documentScores.entrySet().stream()
.sorted(Map.Entry.<String, Double>comparingByValue().reversed())
.limit(10)
.map(entry -> findDocumentById(entry.getKey()))
.filter(Objects::nonNull)
.collect(Collectors.toList());
}
}

Financial Domain-Specific Text Splitter

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
@Component
public class FinancialTextSplitter {

private static final Pattern FINANCIAL_SECTION_PATTERN =
Pattern.compile("(INCOME|EXPENSES|ASSETS|LIABILITIES|CASH FLOW|CREDIT HISTORY)",
Pattern.CASE_INSENSITIVE);

private static final Pattern CURRENCY_PATTERN =
Pattern.compile("\\$[0-9,]+\\.?[0-9]*|[0-9,]+\\.[0-9]{2}");

public List<String> splitFinancialDocument(String text) {
List<String> chunks = new ArrayList<>();

// Split by financial sections first
String[] sections = FINANCIAL_SECTION_PATTERN.split(text);

for (String section : sections) {
if (section.length() > 2000) {
// Further split large sections while preserving financial context
chunks.addAll(splitLargeSection(section));
} else {
chunks.add(section.trim());
}
}

return chunks.stream()
.filter(chunk -> !chunk.isEmpty())
.collect(Collectors.toList());
}

private List<String> splitLargeSection(String section) {
List<String> chunks = new ArrayList<>();
String[] sentences = section.split("\\.");

StringBuilder currentChunk = new StringBuilder();

for (String sentence : sentences) {
if (currentChunk.length() + sentence.length() > 1500) {
if (currentChunk.length() > 0) {
chunks.add(currentChunk.toString().trim());
currentChunk = new StringBuilder();
}
}

currentChunk.append(sentence).append(".");

// Preserve financial context by keeping currency amounts together
if (CURRENCY_PATTERN.matcher(sentence).find()) {
// Don't split immediately after financial amounts
continue;
}
}

if (currentChunk.length() > 0) {
chunks.add(currentChunk.toString().trim());
}

return chunks;
}
}

MCP Server and Agent-to-Agent Communication

The Model Context Protocol (MCP) enables seamless communication between specialized agents, each handling specific domain expertise.

MCPServerManager

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
@Component
public class MCPServerManager {

private final Map<String, MCPAgent> agents = new ConcurrentHashMap<>();

@PostConstruct
public void initializeAgents() {
// Initialize specialized agents
agents.put("credit_agent", new CreditAnalysisAgent());
agents.put("risk_agent", new RiskAssessmentAgent());
agents.put("compliance_agent", new ComplianceAgent());
agents.put("document_agent", new DocumentAnalysisAgent());
}

public AgentResponse routeToAgent(String agentType, AgentRequest request) {
MCPAgent agent = agents.get(agentType);
if (agent == null) {
throw new AgentNotFoundException("Agent not found: " + agentType);
}

return agent.process(request);
}

public CompoundResponse processWithMultipleAgents(List<String> agentTypes,
AgentRequest request) {
CompoundResponse.Builder responseBuilder = CompoundResponse.builder();

// Process with multiple agents in parallel
List<CompletableFuture<AgentResponse>> futures = agentTypes.stream()
.map(agentType -> CompletableFuture.supplyAsync(() ->
routeToAgent(agentType, request)))
.collect(Collectors.toList());

CompletableFuture.allOf(futures.toArray(new CompletableFuture[0]))
.join();

// Combine responses
List<AgentResponse> responses = futures.stream()
.map(CompletableFuture::join)
.collect(Collectors.toList());

return responseBuilder.agentResponses(responses).build();
}
}

Credit Analysis Agent Example

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
@Component
public class CreditAnalysisAgent {

@MCPMethod("analyze_credit_profile")
public CreditAnalysisResult analyzeCreditProfile(CreditAnalysisRequest request) {
// Specialized credit analysis logic
CreditProfile profile = request.getCreditProfile();

// Calculate various credit metrics
double debtToIncomeRatio = calculateDebtToIncomeRatio(profile);
double creditUtilization = calculateCreditUtilization(profile);
int paymentHistory = analyzePaymentHistory(profile);

// Generate risk score
double riskScore = calculateCreditRiskScore(debtToIncomeRatio, creditUtilization, paymentHistory);

// Provide recommendations
List<String> recommendations = generateCreditRecommendations(profile, riskScore);

return CreditAnalysisResult.builder()
.riskScore(riskScore)
.debtToIncomeRatio(debtToIncomeRatio)
.creditUtilization(creditUtilization)
.paymentHistoryScore(paymentHistory)
.recommendations(recommendations)
.analysisTimestamp(Instant.now())
.build();
}

private double calculateCreditRiskScore(double dtiRatio, double utilization, int paymentHistory) {
// Weighted scoring algorithm
double dtiWeight = 0.35;
double utilizationWeight = 0.30;
double paymentHistoryWeight = 0.35;

double dtiScore = Math.max(0, 100 - (dtiRatio * 2)); // Lower DTI = higher score
double utilizationScore = Math.max(0, 100 - (utilization * 100)); // Lower utilization = higher score
double paymentScore = paymentHistory; // Already normalized to 0-100

return (dtiScore * dtiWeight) + (utilizationScore * utilizationWeight) + (paymentScore * paymentHistoryWeight);
}
}

Session Memory and Context Caching with mem0

The mem0 solution provides sophisticated context management, maintaining conversation state and user preferences across sessions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
@Service
public class ContextMemoryService {

@Autowired
private Mem0Client mem0Client;

@Autowired
private RedisTemplate<String, Object> redisTemplate;

public ConversationContext getContext(String sessionId) {
// Try L1 cache first (Redis)
ConversationContext context = (ConversationContext)
redisTemplate.opsForValue().get("context:" + sessionId);

if (context == null) {
// Fall back to mem0 for persistent context
context = mem0Client.getContext(sessionId);
if (context != null) {
// Cache in Redis for quick access
redisTemplate.opsForValue().set("context:" + sessionId,
context, Duration.ofMinutes(30));
}
}

return context != null ? context : new ConversationContext(sessionId);
}

public void updateContext(String sessionId, ConversationContext context) {
// Update both caches
redisTemplate.opsForValue().set("context:" + sessionId,
context, Duration.ofMinutes(30));
mem0Client.updateContext(sessionId, context);
}

public void addMemory(String sessionId, Memory memory) {
mem0Client.addMemory(sessionId, memory);

// Invalidate cache to force refresh
redisTemplate.delete("context:" + sessionId);
}
}

Key Interview Question: “How do you handle context windows and memory management in long conversations?”

Reference Answer: The system uses a hierarchical memory approach. Short-term context is kept in Redis for quick access, while long-term memories are stored in mem0. We implement context window management by summarizing older parts of conversations and keeping only the most relevant recent exchanges. The system also uses semantic clustering to group related memories and retrieves them based on relevance to the current conversation.

LLM ReAct Pattern Implementation

The ReAct (Reasoning + Acting) pattern enables the system to break down complex queries into reasoning steps and actions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
@Component
public class ReActEngine {

@Autowired
private ChatModel chatModel;

@Autowired
private ToolRegistry toolRegistry;

public ReActResponse process(String query, ConversationContext context) {
ReActState state = new ReActState(query, context);

while (!state.isComplete() && state.getStepCount() < MAX_STEPS) {
// Reasoning step
ReasoningResult reasoning = performReasoning(state);
state.addReasoning(reasoning);

// Action step
if (reasoning.requiresAction()) {
ActionResult action = performAction(reasoning.getAction(), state);
state.addAction(action);

// Observation step
if (action.hasObservation()) {
state.addObservation(action.getObservation());
}
}

// Check if we have enough information to provide final answer
if (reasoning.canProvideAnswer()) {
state.setComplete(true);
}
}

return generateFinalResponse(state);
}

private ReasoningResult performReasoning(ReActState state) {
String reasoningPrompt = buildReasoningPrompt(state);
ChatResponse response = chatModel.call(new Prompt(reasoningPrompt));

return parseReasoningResponse(response.getResult().getOutput().getContent());
}

private ActionResult performAction(Action action, ReActState state) {
Tool tool = toolRegistry.getTool(action.getToolName());
if (tool == null) {
return ActionResult.error("Tool not found: " + action.getToolName());
}

return tool.execute(action.getParameters(), state.getContext());
}
}

LLM Planning Pattern implementation

The Planning pattern enables the system to create and execute complex multi-step plans for loan processing workflows.

Planning Implementation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
@Service
public class PlanningAgent {

@Autowired
private ChatClient chatClient;

@Autowired
private TaskExecutor taskExecutor;

@Autowired
private PlanValidator planValidator;

public PlanExecutionResult executePlan(String objective, PlanningConfig config) {
// Step 1: Generate plan
Plan plan = generatePlan(objective, config);

// Step 2: Validate plan
ValidationResult validation = planValidator.validate(plan);
if (!validation.isValid()) {
return PlanExecutionResult.failed(validation.getErrors());
}

// Step 3: Execute plan
return executePlanSteps(plan);
}

private Plan generatePlan(String objective, PlanningConfig config) {
String prompt = String.format(
"Create a detailed plan to achieve the following objective: %s\n\n" +
"Available capabilities: %s\n\n" +
"Constraints: %s\n\n" +
"Generate a step-by-step plan with the following format:\n" +
"1. Step description\n" +
" - Required tools: [tool1, tool2]\n" +
" - Expected output: description\n" +
" - Dependencies: [step numbers]\n\n" +
"Plan:",
objective,
config.getAvailableCapabilities(),
config.getConstraints());

ChatResponse response = chatClient.call(new Prompt(prompt));
return parsePlan(response.getResult().getOutput().getContent());
}

private PlanExecutionResult executePlanSteps(Plan plan) {
List<StepResult> stepResults = new ArrayList<>();
Map<String, Object> context = new HashMap<>();

for (PlanStep step : plan.getSteps()) {
try {
// Check dependencies
if (!areDependenciesMet(step, stepResults)) {
return PlanExecutionResult.failed("Dependencies not met for step: " + step.getId());
}

// Execute step
StepResult result = executeStep(step, context);
stepResults.add(result);

// Update context with results
context.put(step.getId(), result.getOutput());

// Check if step failed
if (!result.isSuccess()) {
return PlanExecutionResult.failed("Step failed: " + step.getId());
}

} catch (Exception e) {
return PlanExecutionResult.failed("Step execution error: " + e.getMessage());
}
}

return PlanExecutionResult.success(stepResults);
}

private StepResult executeStep(PlanStep step, Map<String, Object> context) {
return taskExecutor.execute(TaskExecution.builder()
.stepId(step.getId())
.description(step.getDescription())
.tools(step.getRequiredTools())
.context(context)
.build());
}
}

// Example: Loan processing planning
@Component
public class LoanProcessingPlanner {

@Autowired
private PlanningAgent planningAgent;

public LoanProcessingResult processLoanWithPlanning(LoanApplication application) {
String objective = String.format(
"Process loan application for %s requesting $%,.2f. " +
"Complete all required verifications and make final decision.",
application.getApplicantName(),
application.getRequestedAmount());

PlanningConfig config = PlanningConfig.builder()
.availableCapabilities(Arrays.asList(
"document_verification", "credit_check", "income_verification",
"employment_verification", "risk_assessment", "compliance_check"))
.constraints(Arrays.asList(
"Must complete within 30 minutes",
"Must verify all required documents",
"Must comply with lending regulations"))
.build();

PlanExecutionResult result = planningAgent.executePlan(objective, config);

return LoanProcessingResult.builder()
.application(application)
.executionResult(result)
.decision(extractDecisionFromPlan(result))
.processingTime(result.getExecutionTime())
.build();
}
}

Model Providers Routing with Higress AI gateway

Higress AI Gateway provides intelligent routing and load balancing across multiple LLM providers, ensuring optimal performance and cost efficiency.

Gateway Configuration:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
@Configuration
public class HigressAIGatewayConfig {

@Bean
public ModelProviderRouter modelProviderRouter() {
return ModelProviderRouter.builder()
.addProvider("openai", OpenAIProvider.builder()
.apiKey("${openai.api-key}")
.models(Arrays.asList("gpt-4", "gpt-3.5-turbo"))
.rateLimits(RateLimits.builder()
.requestsPerMinute(60)
.tokensPerMinute(150000)
.build())
.build())
.addProvider("anthropic", AnthropicProvider.builder()
.apiKey("${anthropic.api-key}")
.models(Arrays.asList("claude-3-opus", "claude-3-sonnet"))
.rateLimits(RateLimits.builder()
.requestsPerMinute(50)
.tokensPerMinute(100000)
.build())
.build())
.addProvider("azure", AzureProvider.builder()
.apiKey("${azure.api-key}")
.endpoint("${azure.endpoint}")
.models(Arrays.asList("gpt-4", "gpt-35-turbo"))
.rateLimits(RateLimits.builder()
.requestsPerMinute(100)
.tokensPerMinute(200000)
.build())
.build())
.routingStrategy(RoutingStrategy.WEIGHTED_ROUND_ROBIN)
.fallbackStrategy(FallbackStrategy.CASCADE)
.build();
}
}

@Service
public class IntelligentModelRouter {

@Autowired
private ModelProviderRouter router;

@Autowired
private ModelPerformanceMonitor monitor;

@Autowired
private CostOptimizer costOptimizer;

public ModelResponse routeRequest(ModelRequest request) {
// Determine optimal provider based on request characteristics
ProviderSelection selection = selectOptimalProvider(request);

try {
// Route to selected provider
ModelResponse response = router.route(request, selection.getProvider());

// Update performance metrics
monitor.recordSuccess(selection.getProvider(), response.getLatency());

return response;

} catch (Exception e) {
// Handle failures with fallback
return handleFailureWithFallback(request, selection, e);
}
}

private ProviderSelection selectOptimalProvider(ModelRequest request) {
// Analyze request characteristics
RequestAnalysis analysis = analyzeRequest(request);

// Consider multiple factors for provider selection
List<ProviderScore> scores = new ArrayList<>();

for (String provider : router.getAvailableProviders()) {
double score = calculateProviderScore(provider, analysis);
scores.add(new ProviderScore(provider, score));
}

// Select provider with highest score
ProviderScore best = scores.stream()
.max(Comparator.comparingDouble(ProviderScore::getScore))
.orElse(scores.get(0));

return ProviderSelection.builder()
.provider(best.getProvider())
.confidence(best.getScore())
.reasoning(generateSelectionReasoning(best, analysis))
.build();
}

private double calculateProviderScore(String provider, RequestAnalysis analysis) {
double score = 0.0;

// Factor 1: Model capability match
score += calculateCapabilityScore(provider, analysis) * 0.4;

// Factor 2: Performance (latency, availability)
score += calculatePerformanceScore(provider) * 0.3;

// Factor 3: Cost efficiency
score += calculateCostScore(provider, analysis) * 0.2;

// Factor 4: Current load
score += calculateLoadScore(provider) * 0.1;

return score;
}

private ModelResponse handleFailureWithFallback(
ModelRequest request, ProviderSelection selection, Exception error) {

log.warn("Provider {} failed, attempting fallback", selection.getProvider(), error);

// Get fallback providers
List<String> fallbackProviders = router.getFallbackProviders(selection.getProvider());

for (String fallbackProvider : fallbackProviders) {
try {
ModelResponse response = router.route(request, fallbackProvider);
monitor.recordFallbackSuccess(fallbackProvider);
return response;
} catch (Exception fallbackError) {
log.warn("Fallback provider {} also failed", fallbackProvider, fallbackError);
}
}

// All providers failed
throw new ModelRoutingException("All providers failed for request", error);
}
}

LLM Prompt Templates via Nacos

Dynamic prompt management through Nacos configuration center enables hot-swapping of prompts without system restart.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
@Component
@ConfigurationProperties(prefix = "prompts")
public class PromptTemplateService {

@NacosValue("${prompts.loan-assessment}")
private String loanAssessmentTemplate;

@NacosValue("${prompts.risk-analysis}")
private String riskAnalysisTemplate;

@NacosValue("${prompts.knowledge-query}")
private String knowledgeQueryTemplate;

private final Map<String, String> templateCache = new ConcurrentHashMap<>();

@PostConstruct
public void initializeTemplates() {
templateCache.put("loan_assessment", loanAssessmentTemplate);
templateCache.put("risk_analysis", riskAnalysisTemplate);
templateCache.put("knowledge_query", knowledgeQueryTemplate);
}

public String getTemplate(String templateName) {
return templateCache.getOrDefault(templateName, getDefaultTemplate());
}

@NacosConfigListener(dataId = "prompts", type = ConfigType.YAML)
public void onConfigChange(String configInfo) {
// Hot reload templates when configuration changes
log.info("Prompt templates updated, reloading...");
// Parse new configuration and update cache
updateTemplateCache(configInfo);
}

private void updateTemplateCache(String configInfo) {
try {
ObjectMapper mapper = new ObjectMapper(new YAMLFactory());
Map<String, String> newTemplates = mapper.readValue(configInfo,
new TypeReference<Map<String, String>>() {});

templateCache.clear();
templateCache.putAll(newTemplates);

log.info("Successfully updated {} prompt templates", newTemplates.size());
} catch (Exception e) {
log.error("Failed to update prompt templates", e);
}
}
}

Monitoring and Observability with OpenTelemetry

OpenTelemetry provides comprehensive observability for the AI system, enabling performance monitoring, error tracking, and optimization insights.

OpenTelemetry Configuration:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
@Configuration
@EnableAutoConfiguration
public class OpenTelemetryConfig {

@Bean
public OpenTelemetry openTelemetry() {
return OpenTelemetySdk.builder()
.setTracerProvider(
SdkTracerProvider.builder()
.addSpanProcessor(BatchSpanProcessor.builder(
OtlpGrpcSpanExporter.builder()
.setEndpoint("http://jaeger:14250")
.build())
.build())
.setResource(Resource.getDefault()
.merge(Resource.builder()
.put(ResourceAttributes.SERVICE_NAME, "fintech-ai-system")
.put(ResourceAttributes.SERVICE_VERSION, "1.0.0")
.build()))
.build())
.setMeterProvider(
SdkMeterProvider.builder()
.registerMetricReader(
PeriodicMetricReader.builder(
OtlpGrpcMetricExporter.builder()
.setEndpoint("http://prometheus:9090")
.build())
.setInterval(Duration.ofSeconds(30))
.build())
.build())
.build();
}
}

@Component
public class AISystemObservability {

private final Tracer tracer;
private final Meter meter;

// Metrics
private final Counter requestCounter;
private final Histogram responseTime;
private final Gauge activeConnections;

public AISystemObservability(OpenTelemetry openTelemetry) {
this.tracer = openTelemetry.getTracer("fintech-ai-system");
this.meter = openTelemetry.getMeter("fintech-ai-system");

// Initialize metrics
this.requestCounter = meter.counterBuilder("ai_requests_total")
.setDescription("Total number of AI requests")
.build();

this.responseTime = meter.histogramBuilder("ai_response_time_seconds")
.setDescription("AI response time in seconds")
.build();

this.activeConnections = meter.gaugeBuilder("ai_active_connections")
.setDescription("Number of active AI connections")
.buildObserver();
}

public <T> T traceAIOperation(String operationName, Supplier<T> operation) {
Span span = tracer.spanBuilder(operationName)
.setSpanKind(SpanKind.INTERNAL)
.startSpan();

try (Scope scope = span.makeCurrent()) {
long startTime = System.nanoTime();

// Execute operation
T result = operation.get();

// Record metrics
long duration = System.nanoTime() - startTime;
responseTime.record(duration / 1_000_000_000.0);
requestCounter.add(1);

// Add span attributes
span.setStatus(StatusCode.OK);
span.setAttribute("operation.success", true);

return result;

} catch (Exception e) {
span.setStatus(StatusCode.ERROR, e.getMessage());
span.setAttribute("operation.success", false);
span.setAttribute("error.type", e.getClass().getSimpleName());
throw e;
} finally {
span.end();
}
}

public void recordLLMMetrics(String provider, String model, long tokens,
double latency, boolean success) {

Attributes attributes = Attributes.builder()
.put("provider", provider)
.put("model", model)
.put("success", success)
.build();

meter.counterBuilder("llm_requests_total")
.build()
.add(1, attributes);

meter.histogramBuilder("llm_token_usage")
.build()
.record(tokens, attributes);

meter.histogramBuilder("llm_latency_seconds")
.build()
.record(latency, attributes);
}
}

// Usage in services
@Service
public class MonitoredAIService {

@Autowired
private AISystemObservability observability;

@Autowired
private ChatClient chatClient;

public String processWithMonitoring(String query) {
return observability.traceAIOperation("llm_query_processing", () -> {
long startTime = System.currentTimeMillis();

try {
ChatResponse response = chatClient.call(new Prompt(query));

// Record success metrics
long latency = System.currentTimeMillis() - startTime;
observability.recordLLMMetrics("openai", "gpt-4",
response.getResult().getMetadata().getUsage().getTotalTokens(),
latency / 1000.0, true);

return response.getResult().getOutput().getContent();

} catch (Exception e) {
// Record failure metrics
long latency = System.currentTimeMillis() - startTime;
observability.recordLLMMetrics("openai", "gpt-4", 0,
latency / 1000.0, false);
throw e;
}
});
}
}

Use Cases and Examples

Use Case 1: Automated Loan Application Processing

Scenario: A customer applies for a $50,000 personal loan through the chat interface.

Flow:

  1. Customer initiates conversation: “I’d like to apply for a personal loan”
  2. AI classifies intent as LOAN_APPLICATION
  3. System guides customer through document collection
  4. AI processes submitted documents using OCR and NLP
  5. Automated workflow calls external systems for verification
  6. AI makes preliminary assessment with 92% confidence
  7. System auto-approves loan with conditions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// Example implementation
@Test
public void testAutomatedLoanFlow() {
// Simulate customer input
ConversationRequest request = ConversationRequest.builder()
.text("I need a $50,000 personal loan")
.sessionId("session-123")
.build();

// Process through conversation service
ConversationResponse response = conversationService.processMessage(request);

assertThat(response.getIntent()).isEqualTo(IntentType.LOAN_APPLICATION);
assertThat(response.getNextSteps()).contains("document_collection");

// Simulate document upload
ConversationRequest docRequest = ConversationRequest.builder()
.files(Arrays.asList(mockPayStub, mockBankStatement))
.sessionId("session-123")
.build();

ConversationResponse docResponse = conversationService.processMessage(docRequest);

// Verify AI processing
assertThat(docResponse.getProcessingResult().getConfidence()).isGreaterThan(0.9);
}

Use Case 2: Multi-Modal Customer Support

Scenario: Customer uploads a photo of their bank statement and asks about eligibility.

Flow:

  1. Customer uploads bank statement image
  2. OCR extracts text and financial data
  3. AI analyzes income patterns and expenses
  4. System queries knowledge base for eligibility criteria
  5. AI provides personalized eligibility assessment

Use Case 3: Complex Financial Query Resolution

Scenario: “What are the tax implications of early loan repayment?”

Flow:

  1. ReAct engine breaks down the query
  2. System retrieves relevant tax documents from knowledge base
  3. AI reasons through tax implications step by step
  4. System provides comprehensive answer with citations

Performance Optimization and Scalability

Caching Strategy

The system implements a multi-level caching strategy to achieve sub-30-second response times:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
@Service
public class CachingService {

@Autowired
private RedisTemplate<String, Object> redisTemplate;

@Cacheable(value = "llm-responses", key = "#promptHash")
public String getCachedResponse(String promptHash) {
return (String) redisTemplate.opsForValue().get("llm:" + promptHash);
}

@CachePut(value = "llm-responses", key = "#promptHash")
public String cacheResponse(String promptHash, String response) {
redisTemplate.opsForValue().set("llm:" + promptHash, response,
Duration.ofHours(1));
return response;
}

@Cacheable(value = "embeddings", key = "#text.hashCode()")
public List<Float> getCachedEmbedding(String text) {
return (List<Float>) redisTemplate.opsForValue().get("embedding:" + text.hashCode());
}
}

Load Balancing and Horizontal Scaling


flowchart LR
A[Load Balancer] --> B[Service Instance 1]
A --> C[Service Instance 2]
A --> D[Service Instance 3]

B --> E[LLM Provider 1]
B --> F[LLM Provider 2]
C --> E
C --> F
D --> E
D --> F

E --> G[Redis Cache]
F --> G

B --> H[Vector DB]
C --> H
D --> H

Database Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
@Entity
@Table(name = "loan_applications", indexes = {
@Index(name = "idx_applicant_status", columnList = "applicant_id, status"),
@Index(name = "idx_created_date", columnList = "created_date")
})
public class LoanApplication {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

@Column(name = "applicant_id", nullable = false)
private String applicantId;

@Enumerated(EnumType.STRING)
@Column(name = "status", nullable = false)
private ApplicationStatus status;

@Column(name = "created_date", nullable = false)
private LocalDateTime createdDate;

// Optimized for queries
@Column(name = "search_vector", columnDefinition = "tsvector")
private String searchVector;
}

Key Interview Question: “How do you ensure the system can handle 2000+ concurrent users while maintaining response times?”

Reference Answer: The system uses several optimization techniques: 1) Multi-level caching with Redis for frequently accessed data, 2) Connection pooling for database and external service calls, 3) Asynchronous processing for non-critical operations, 4) Load balancing across multiple LLM providers, 5) Database query optimization with proper indexing, 6) Context caching to avoid repeated LLM calls for similar queries, and 7) Horizontal scaling of microservices based on demand.

Conclusion

The FinTech AI Workflow and Chat System represents a sophisticated integration of traditional financial workflows with cutting-edge AI technologies. By combining the reliability of established banking processes with the intelligence of modern AI systems, the platform delivers a superior user experience while maintaining the security and compliance requirements essential in financial services.

The architecture’s microservices design ensures scalability and maintainability, while the AI components provide intelligent automation that reduces processing time and improves accuracy. The system’s ability to handle over 2000 concurrent conversations with rapid response times demonstrates its enterprise readiness.

Key success factors include:

  • Seamless integration between traditional and AI-powered workflows
  • Robust multi-modal processing capabilities
  • Intelligent context management and memory systems
  • Flexible prompt template management for rapid iteration
  • Comprehensive performance optimization strategies

The system sets a new standard for AI-powered financial services, combining the best of human expertise with artificial intelligence to create a truly intelligent lending platform.

External Resources and References